Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2320397

ABSTRACT

We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.


Subject(s)
Alkaloids , COVID-19 , Nuphar , Mice , Animals , SARS-CoV-2 , Nuphar/chemistry , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alkaloids/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice, Transgenic
3.
Arch Toxicol ; 96(8): 2329-2339, 2022 08.
Article in English | MEDLINE | ID: covidwho-1930384

ABSTRACT

BriLife®, a vector-based vaccine that utilizes the recombinant vesicular stomatitis virus (VSV) platform to express and present the spike antigen of SARS-CoV-2, is undergoing testing in a phase 2 clinical trial in Israel. A nonclinical repeated-dose (GLP) toxicity study in New Zealand white rabbits was performed to evaluate the potential toxicity, local tolerance, immunogenicity and biodistribution of the vaccine. rVSV-ΔG-SARS-CoV-2-S (or vehicle) was administered intramuscularly to two groups of animals (106, 107 PFU/animal, n = 10/sex/group) on three occasions, at 2-week intervals, followed by a 3-week recovery period. Systemic clinical signs, local reactions, body weight, body temperature, food consumption, ophthalmology, urinalysis, clinical pathology, C-reactive protein, viremia and antibody levels were monitored. Gross pathology was performed, followed by organs/tissues collection for biodistribution and histopathological evaluation. Treatment-related changes were restricted to multifocal minimal myofiber necrosis at the injection sites, and increased lymphocytic cellularity in the iliac and mesenteric lymph nodes and in the spleen. These changes were considered related to the inflammatory reaction elicited, and correlated with a trend for recovery. Detection of rVSV-ΔG-SARS-CoV-2-S vaccine RNA was noted in the regional iliac lymph node in animals assigned to the high-dose group, at both termination time points. A significant increase in binding and neutralizing antibody titers was observed following vaccination at both vaccine doses. In view of the findings, it was concluded that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe. These results supported the initiation of clinical trials.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Rabbits , SARS-CoV-2 , Tissue Distribution
4.
Cell Rep ; 39(11): 110954, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1866958

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to shutoff of protein synthesis, and nsp1, a central shutoff factor in coronaviruses, inhibits cellular mRNA translation. However, the diverse molecular mechanisms employed by nsp1 as well as its functional importance are unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant, we show that nsp1, through inhibition of translation and induction of mRNA degradation, targets translated cellular mRNA and is the main driver of host shutoff during infection. The propagation of nsp1 mutant virus is inhibited exclusively in cells with intact interferon (IFN) pathway as well as in vivo, in hamsters, and this attenuation is associated with stronger induction of type I IFN response. Therefore, although nsp1's shutoff activity is broad, it plays an essential role, specifically in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover nsp1's explicit role in blocking the IFN response.


Subject(s)
COVID-19 , Viral Nonstructural Proteins , Cell Line , Humans , RNA Stability , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
5.
Int J Infect Dis ; 118: 211-213, 2022 May.
Article in English | MEDLINE | ID: covidwho-1838859

ABSTRACT

SARS-CoV-2 Omicron strain emergence raised concerns that its enhanced infectivity is partly due to altered spread/contamination modalities. We therefore sampled high-contact surfaces and air in close proximity to patients who were verified as infected with the Omicron strain, using identical protocols applied to sample patients positive to the original or Alpha strains. Cumulatively, for all 3 strains, viral RNA was detected in 90 of 168 surfaces and 6 of 49 air samples (mean cycle threshold [Ct]=35.2±2.5). No infective virus was identified. No significant differences in prevalence were found between strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Specimen Handling
6.
Arch Virol ; 167(4): 1041-1049, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1709039

ABSTRACT

SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, emerged as the cause of a global crisis in 2019. Currently, the main method for identification of SARS-CoV-2 is a reverse transcription (RT)-PCR assay designed to detect viral RNA in oropharyngeal (OP) or nasopharyngeal (NP) samples. While the PCR assay is considered highly specific and sensitive, this method cannot determine the infectivity of the sample, which may assist in evaluation of virus transmissibility from patients and breaking transmission chains. Thus, cell-culture-based approaches such as cytopathic effect (CPE) assays are routinely employed for the identification of infectious viruses in NP/OP samples. Despite their high sensitivity, CPE assays take several days and require additional diagnostic tests in order to verify the identity of the pathogen. We have therefore developed a rapid immunofluorescence assay (IFA) for the specific detection of SARS-CoV-2 in NP/OP samples following cell culture infection. Initially, IFA was carried out on Vero E6 cultures infected with SARS-CoV-2 at defined concentrations, and infection was monitored at different time points. This test was able to yield positive signals in cultures infected with 10 pfu/ml at 12 hours postinfection (PI). Increasing the incubation time to 24 hours reduced the detectable infective dose to 1 pfu/ml. These IFA signals occur before the development of CPE. When compared to the CPE test, IFA has the advantages of specificity, rapid detection, and sensitivity, as demonstrated in this work.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Fluorescent Antibody Technique , Humans , Nasopharynx , Pandemics , RNA, Viral/genetics , Sensitivity and Specificity
7.
Vaccines (Basel) ; 10(2)2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1699506

ABSTRACT

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations of specific amino acids that might impede vaccine efficacy. BriLife® (rVSV-ΔG-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in phase II clinical trials. It is based on a replication-competent vesicular stomatitis virus (VSV) platform. The rVSV-ΔG-spike contains several spontaneously acquired spike mutations that correspond to SARS-CoV-2 variants' mutations. We show that human sera from BriLife® vaccinees preserve comparable neutralization titers towards alpha, gamma, and delta variants and show less than a three-fold reduction in the neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife® vaccinees overall maintain a neutralizing antibody response against all tested variants. We suggest that BriLife®-acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

8.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625815

ABSTRACT

SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , Immunity, Innate , Poly I-C/immunology , Poly I-C/therapeutic use , SARS-CoV-2/drug effects , Toll-Like Receptor 3/agonists , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Disease Models, Animal , Female , Humans , Lung/immunology , Lung/virology , Mice , Mice, Transgenic , SARS-CoV-2/immunology , Toll-Like Receptor 3/immunology , Viral Load/drug effects , COVID-19 Drug Treatment
9.
Anal Bioanal Chem ; 414(5): 1949-1962, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1607761

ABSTRACT

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC-MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC-MS analysis. A sensitive and specific LC-MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Chromatography, Liquid/methods , Immunomagnetic Separation/methods , SARS-CoV-2/genetics , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Antibodies, Viral/chemistry , Biomarkers/chemistry , COVID-19/immunology , COVID-19/virology , COVID-19 Testing/instrumentation , COVID-19 Testing/standards , Chromatography, Liquid/instrumentation , Chromatography, Liquid/standards , Humans , Immunomagnetic Separation/instrumentation , Immunomagnetic Separation/standards , Nasopharynx/virology , Peptides/chemistry , Peptides/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/standards
10.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-1580414

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a severe global pandemic. Mice models are essential to investigate infection pathology, antiviral drugs, and vaccine development. However, wild-type mice lack the human angiotensin-converting enzyme 2 (hACE2) that mediates SARS-CoV-2 entry into human cells and consequently are not susceptible to SARS-CoV-2 infection. hACE2 transgenic mice could provide an efficient COVID-19 model, but are not always readily available, and practically restricted to specific strains. Therefore, there is a dearth of additional mouse models for SARS-CoV-2 infection. We applied lentiviral vectors to generate hACE2 expression in interferon receptor knock-out (IFNAR1-/-) mice. Lenti-hACE2 transduction supported SARS-CoV-2 replication in vivo, simulating mild acute lung disease. Gene expression analysis revealed two modes of immune responses to SARS-CoV-2 infection: one in response to the exposure of mouse lungs to SARS-CoV-2 particles in the absence of productive viral replication, and the second in response to productive SARS-CoV-2 infection. Our results infer that immune response to immunogenic elements on incoming virus or in productively infected cells stimulate diverse immune effectors, even in absence of type I IFN signaling. Our findings should contribute to a better understanding of the immune response triggered by SARS-CoV-2 and to further elucidate COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/immunology , Disease Models, Animal , Lentivirus/genetics , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/virology , Cell Line , Humans , Immunity/genetics , Lung/immunology , Lung/virology , Mice , Mice, Transgenic , Receptor, Interferon alpha-beta/genetics , Transduction, Genetic , Virus Replication
11.
Front Bioeng Biotechnol ; 9: 737627, 2021.
Article in English | MEDLINE | ID: covidwho-1477802

ABSTRACT

The COVID-19 pandemic initiated a worldwide race toward the development of treatments and vaccines. Small animal models included the Syrian golden hamster and the K18-hACE2 mice infected with SARS-CoV-2 to display a disease state with some aspects of human COVID-19. A group activity of animals in their home cage continuously monitored by the HCMS100 (Home cage Monitoring System 100) was used as a sensitive marker of disease, successfully detecting morbidity symptoms of SARS-CoV-2 infection in hamsters and in K18-hACE2 mice. COVID-19 convalescent hamsters rechallenged with SARS-CoV-2 exhibited minor reduction in group activity compared to naive hamsters. To evaluate the rVSV-ΔG-spike vaccination efficacy against SARS-CoV-2, we used the HCMS100 to monitor the group activity of hamsters in their home cage. A single-dose rVSV-ΔG-spike vaccination of the immunized group showed a faster recovery than the nonimmunized infected hamsters, substantiating the efficacy of rVSV-ΔG-spike vaccine. HCMS100 offers nonintrusive, hands-free monitoring of a number of home cages of hamsters or mice modeling COVID-19.

12.
Nat Commun ; 12(1): 5819, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1454763

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The continued spread of SARS-CoV-2 increases the probability of influenza/SARS-CoV-2 coinfection, which may result in severe disease. In this study, we examine the disease outcome of influenza A virus (IAV) and SARS-CoV-2 coinfection in K18-hACE2 mice. Our data indicate enhance susceptibility of IAV-infected mice to developing severe disease upon coinfection with SARS-CoV-2 two days later. In contrast to nonfatal influenza and lower mortality rates due to SARS-CoV-2 alone, this coinfection results in severe morbidity and nearly complete mortality. Coinfection is associated with elevated influenza viral loads in respiratory organs. Remarkably, prior immunity to influenza, but not to SARS-CoV-2, prevents severe disease and mortality. This protection is antibody-dependent. These data experimentally support the necessity of seasonal influenza vaccination for reducing the risk of severe influenza/COVID-19 comorbidity during the COVID-19 pandemic.


Subject(s)
COVID-19/immunology , COVID-19/virology , Coinfection/immunology , Coinfection/virology , Immunity , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , COVID-19/pathology , Cell Line , Disease Models, Animal , Female , Humans , Inflammation/genetics , Lung/pathology , Lung/virology , Male , Mice, Inbred C57BL , Mice, Transgenic , Up-Regulation/genetics , Viral Load/immunology
13.
Microbiol Spectr ; 9(2): e0087021, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1455682

ABSTRACT

The first case of SARS-CoV-2 was discovered in Israel in late February 2020. Three major outbreaks followed, resulting in over 800,000 cases and over 6,000 deaths by April 2021. Our aim was characterization of a serological snapshot of Israeli patients and healthy adults in the early months of the COVID-19 pandemic. Sera from 55 symptomatic COVID-19 patients and 146 healthy subjects (early-pandemic, reverse transcription-quantitative PCR [qRT-PCR]-negative), collected in Israel between March and April 2020, were screened for SARS-CoV-2-specific IgG, IgM, and IgA antibodies, using a 6-plex antigen microarray presenting the whole inactivated virus and five viral antigens: a stabilized version of the spike ectodomain (S2P), spike subunit 1 (S1), receptor-binding-domain (RBD), N-terminal-domain (NTD), and nucleocapsid (NC). COVID-19 patients, 4 to 40 days post symptom onset, presented specific IgG to all of the viral antigens (6/6) in 54 of the 55 samples (98% sensitivity). Specific IgM and IgA antibodies for all six antigens were detected in only 10% (5/55) and 4% (2/55) of the patients, respectively, suggesting that specific IgG is a superior serological marker for COVID-19. None of the qRT-PCR-negative sera reacted with all six viral antigens (100% specificity), and 48% (70/146) were negative throughout the panel. Our findings confirm a low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population prior to the COVID-19 outbreak. We further suggest that the presence of low-level cross-reacting antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals. IMPORTANCE A 6-plex protein array presenting the whole inactivated virus and five nucleocapsid and spike-derived SARS-CoV-2 antigens was used to generate a serological snapshot of SARS-CoV-2 seroprevalence and seroconversion in Israel in the early months of the pandemic. Our findings confirm a very low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population. We further propose that the presence of low-level nonspecific antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals enabling accurate determination of seroconversion. The developed assay is currently applied to evaluate immune responses to the Israeli vaccine during human phase I/II trials.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/epidemiology , Microarray Analysis/methods , SARS-CoV-2/immunology , Adult , Aged , Antigens, Viral/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoassay/methods , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Israel/epidemiology , Male , Middle Aged , Phosphoproteins/immunology , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
14.
J Mass Spectrom ; 56(10): e4782, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1410026

ABSTRACT

The human respiratory system is a highly complex matrix that exhales many volatile organic compounds (VOCs). Breath-exhaled VOCs are often "unknowns" and possess low concentrations, which make their analysis, peak digging and data processing challenging. We report a new methodology, applied in a proof-of-concept experiment, for the detection of VOCs in breath. For this purpose, we developed and compared four complementary analysis methods based on solid-phase microextraction and thermal desorption (TD) tubes with two GC-mass spectrometer (MS) methods. Using eight model compounds, we obtained an LOD range of 0.02-20 ng/ml. We found that in breath analysis, sampling the exhausted air from Tedlar bags is better when TD tubes are used, not only because of the preconcentration but also due to the stability of analytes in the TD tubes. Data processing (peak picking) was based on two data retrieval approaches with an in-house script written for comparison and differentiation between two populations: sick and healthy. We found it best to use "raw" AMDIS deconvolution data (.ELU) rather than its NIST (.FIN) identification data for comparison between samples. A successful demonstration of this method was conducted in a pilot study (n = 21) that took place in a closed hospital ward (Covid-19 ward) with the discovery of four potential markers. These preliminary findings, at the molecular level, demonstrate the capabilities of our method and can be applied in larger and more comprehensive experiments in the omics world.


Subject(s)
Breath Tests/methods , COVID-19/diagnosis , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Biomarkers/analysis , COVID-19 Testing/methods , Female , Humans , Male , Pilot Projects , SARS-CoV-2/isolation & purification , Software , Solid Phase Microextraction/methods
15.
Cell Rep ; 36(10): 109679, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1363916

ABSTRACT

A wide range of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing monoclonal antibodies (mAbs) have been reported, most of which target the spike glycoprotein. Therapeutic implementation of these antibodies has been challenged by emerging SARS-CoV-2 variants harboring mutated spike versions. Consequently, re-assessment of previously identified mAbs is of high priority. Four previously selected mAbs targeting non-overlapping epitopes are now evaluated for binding potency to mutated RBD versions, reported to mediate escape from antibody neutralization. In vitro neutralization potencies of these mAbs, and two NTD-specific mAbs, are evaluated against two frequent SARS-CoV-2 variants of concern, the B.1.1.7 Alpha and the B.1.351 Beta. Furthermore, we demonstrate therapeutic potential of three selected mAbs by treatment of K18-human angiotensin-converting enzyme 2 (hACE2) transgenic mice 2 days post-infection with each virus variant. Thus, despite the accumulation of spike mutations, the highly potent MD65 and BL6 mAbs retain their ability to bind the prevalent viral mutants, effectively protecting against B.1.1.7 and B.1.351 variants.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibody Affinity , COVID-19/therapy , COVID-19/virology , Epitopes/genetics , Epitopes/immunology , Humans , Immunization, Passive , Mice , Mice, Transgenic , Models, Molecular , Neutralization Tests , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , COVID-19 Serotherapy
16.
J Infect Dis ; 224(4): 616-619, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1358460

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may influence the effectiveness of existing laboratory diagnostics. In the current study we determined whether the British (20I/501Y.V1) and South African (20H/501Y.V2) SARS-CoV-2 variants of concern are detected with an in-house S1-based antigen detection assay, analyzing spiked pools of quantitative reverse-transcription polymerase chain reaction-negative nasopharyngeal swab specimens. The assay, combining 4 monoclonal antibodies, allowed sensitive detection of both the wild type and the variants of concern, despite accumulation of several mutations in the variants' S1 region-results suggesting that this combination, targeting distinct epitopes, enables both specificity and the universality.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/classification , Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , COVID-19/immunology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Viral Load
17.
Nat Biotechnol ; 39(12): 1556-1562, 2021 12.
Article in English | MEDLINE | ID: covidwho-1287813

ABSTRACT

Frequent testing of large population groups combined with contact tracing and isolation measures will be crucial for containing Coronavirus Disease 2019 outbreaks. Here we present LAMP-Seq, a modified, highly scalable reverse transcription loop-mediated isothermal amplification (RT-LAMP) method. Unpurified biosamples are barcoded and amplified in a single heat step, and pooled products are analyzed en masse by sequencing. Using commercial reagents, LAMP-Seq has a limit of detection of ~2.2 molecules per µl at 95% confidence and near-perfect specificity for severe acute respiratory syndrome coronavirus 2 given its sequence readout. Clinical validation of an open-source protocol with 676 swab samples, 98 of which were deemed positive by standard RT-qPCR, demonstrated 100% sensitivity in individuals with cycle threshold values of up to 33 and a specificity of 99.7%, at a very low material cost. With a time-to-result of fewer than 24 h, low cost and little new infrastructure requirement, LAMP-Seq can be readily deployed for frequent testing as part of an integrated public health surveillance program.


Subject(s)
COVID-19 Testing/methods , COVID-19 , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , COVID-19/diagnosis , Humans
18.
iScience ; 24(5): 102479, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1202318

ABSTRACT

Neutralizing antibodies represent a valuable therapeutic approach to countermeasure the current COVID-19 pandemic. Emergence of SARS-CoV-2 variants emphasizes the notion that antibody treatments need to rely on highly neutralizing monoclonal antibodies (mAbs), targeting several distinct epitopes for circumventing therapy escape mutants. Previously, we reported efficient human therapeutic mAbs recognizing epitopes on the spike receptor-binding domain (RBD) of SARS-CoV-2. Here we report the isolation, characterization, and recombinant production of 12 neutralizing human mAbs, targeting three distinct epitopes on the spike N-terminal domain of the virus. Neutralization mechanism of these antibodies involves receptors other than the canonical hACE2 on target cells, relying both on amino acid and N-glycan epitope recognition, suggesting alternative viral cellular portals. Two selected mAbs demonstrated full protection of K18-hACE2 transgenic mice when administered at low doses and late post-exposure, demonstrating the high potential of the mAbs for therapy of SARS-CoV-2 infection.

19.
Anal Bioanal Chem ; 413(13): 3501-3510, 2021 May.
Article in English | MEDLINE | ID: covidwho-1151992

ABSTRACT

Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many "antigen" detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2's nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices' tendency to exhibit false positive results. In this work, we developed a novel alternative spike-based antigen assay, comprising four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spike's S1 subunit. The assay's performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of novel antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct < 25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct < 25) while less specific (87% specificity). Despite being outperformed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results. Schematic representation of sample collection and analysis. The figure was created using BioRender.com.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Enzyme-Linked Immunosorbent Assay/methods , Humans , Phosphoproteins/analysis , Sensitivity and Specificity , Specimen Handling
20.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-1015609

ABSTRACT

We report the genome sequences and the identification of genetic variations in eight clinical samples of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Samples were collected from nasopharyngeal swabs of symptomatic and asymptomatic individuals from five care homes for elderly and infirm persons in Israel. The sequences obtained are valuable, as they carry a newly reported nonsynonymous substitution located within the nucleoprotein open reading frame.

SELECTION OF CITATIONS
SEARCH DETAIL